Adv Mater 2008, 20:1450.CrossRef 20. Guldi DM, Sgobba V: SP600125 carbon nanostructures for solar energy conversion schemes. Chem Commun 2011, 47:606–610.CrossRef 21. Baughman RH, Zakhidov
AA, de Heer WA: Carbon nanotubes – the route toward applications. Science 2002, 297:787–792.CrossRef 22. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai H: Nanotube molecular wires as chemical sensors. Science 2000, 287:622–625.CrossRef 23. Loiseau A, Willaime F, Demoncy N, Hug G, Pascard H: Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys Rev Lett 1996, 76:4737–4740.CrossRef 24. Journet C, Maser WK, Bernier P, Loiseau A, delaChapelle ML, Lefrant S, Deniard P, Lee R, Fischer JE: Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388:756–758.CrossRef 25. Liu ZP, Zhou XF, Qian YT: Synthetic methodologies for carbon nanomaterials. Adv PX-478 in vitro Mater 2010, 22:1963–1966.CrossRef 26. Sawant SY, Somani RS, Bajaj HC: A solvothermal-reduction method for the production of horn shaped multi-wall carbon nanotubes. Carbon 2010, 48:668–672.CrossRef 27. Ebbesen TW, Ajayan PM: Large-scale synthesis www.selleckchem.com/products/ve-822.html of carbon nanotubes. Nature 1992, 358:220–222.CrossRef 28. Cassell
AM, Raymakers JA, Kong J, Dai HJ: Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 1999, 103:6484–6492.CrossRef 29. Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG: Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew Chemie-Int Ed 2006, 45:2533–2537.CrossRef 30. Jones CP, Jurkschat K, Crossley
A, Compton RG, Riehl BL, Banks CE: Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations. Langmuir 2007, 23:9501–9504.CrossRef 31. Park TJ, Banerjee S, Hemraj-Benny T, Wong SS: Purification strategies and purity visualization techniques for single-walled carbon nanotubes. J Mater Chem 2006, 16:141–154.CrossRef 32. Leal MCA, Horna CD: CVD and the new technologies. An Quim 1991, 87:445–456. 33. Li QW, Yan H, Cheng Y, Zhang J, Liu ZF: A scalable CVD synthesis of high-purity single-walled carbon nanotubes with porous MgO as support material. J Mater Chem 2002, 12:1179–1183.CrossRef 34. Kong J, Cyclin-dependent kinase 3 Zhou C, Morpurgo A, Soh HT, Quate CF, Marcus C, Dai H: Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes. Appl Phys A Mater Sci Process 1999, 69:305–308.CrossRef 35. Su M, Zheng B, Liu J: A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem Phys Lett 2000, 322:321–326.CrossRef 36. Amelinckx S, Zhang XB, Bernaerts D, Zhang XF, Ivanov V, Nagy JB: A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 1994, 265:635–639.CrossRef 37.