For the controls, antibody, complement, or PMN were replaced by R

For the controls, antibody, complement, or PMN were replaced by RPMI-FBS. For PI3K Inhibitor Library enumeration of surviving bacteria, the content of tubes was diluted in TSB, and samples were plated onto tryptic soy agar plates. The percentage of opsonophagocytic killing was calculated by determining the ratio of the Mocetinostat in vitro CFU surviving in the tubes with bacteria, leukocytes, complement, and antibody to the CFU surviving in the tubes with all these components but lacking leukocytes. Quantification of LTA The LTA content of bacterial cell walls was measured according to the method of Fedtke et al. [12]. In summary, wild-type and mutant bacteria were grown for 18 h in TSB, adjusted to an equal

OD600, and bacteria from equal volumes were collected by centrifugation. Bacterial were disrupted by shaking with glass beads as described above, and LTA was extracted from the cell walls by stirring them in an equal volume of butanol and 0.1 M Na-acetate buffer (pH 4,7). The aqueous phase of the extract was dialyzed, lyophilized, and resuspended in the same volume of phosphate buffer (pH 7.0). ELISA plates (Brandt) were coated with a range of LTA PXD101 purchase dilutions at 4°C for 18 h, and adherent LTA was detected using a rabbit antiserum specific for E. faecalis

LTA as primary antibody (see above). A goat anti-rabbit IgG whole-molecule alkaline phosphatase conjugate (Sigma) served as secondary antibody [5]. LTA from E. faecalis 12030, purified by hydrophobic-interaction chromatography, was used as a standard. The amount of LTA shed into the culture medium was measured semi-quantitatively by immuno-dot-blot analysis. To this end, bacteria were grown in TSB at 37°C for 18 h and adjusted to the same OD600. Bacterial cells were removed by centrifugation, culture supernatant was passed through a 0.45 μm membrane filter, and 100 μl of supernatant Vildagliptin was spotted in various dilutions onto PVDF

membrane using a dot-blot microfiltration apparatus (Bio-Dot, Biorad Laboratories, Munich, Germany). The membranes were allowed to dry overnight. Staining of immuno-dot-blots was performed using the same protocol as described for western blot analysis of LTA. Statistical Methods Comparisons were made by one-way ANOVA and Tukey’s multiple comparison test (parametric data) or Kruskal-Wallis test and Dunn’s multiple comparison test (nonparametric data) as indicated using the Prism Graphpad 4 software package. A p-value of < 0.05 was considered statistically significant. Acknowledgements The authors thank Dr. Friedrich Feuerhake for help with electron microscopy, Ioana Toma and Dominique Wobser for excellent technical assistance. J.H. was supported by a grant of the German Ministry of Science and Education (ERA-Net PathoGenoMics 0313933). Electronic supplementary material Additional file 1: Transmission electron microscopy of E. faecalis strains. E. faecalis 12030 wild type (A) and 12030ΔbgsB (B).

Comments are closed.