J.L.). The authors declare no financial or commercial conflict of interest. “
“There is a wealth of immunologic studies that have been carried out in experimental and human schistosomiasis that can be classified into three main areas: immunopathogenesis, resistance to reinfection and diagnostics. It is clear that the bulk of, if
not all, morbidity due to human schistosomiasis results from immune-response-based inflammation against eggs lodged in the body, either as regulated chronic inflammation or Opaganib clinical trial resulting in fibrotic lesions. However, the exact nature of these responses, the antigens to which they are mounted and the mechanisms of the critical regulatory responses are still being sorted out. It is also becoming
apparent that protective immunity against schistosomula as they develop into adult worms develops slowly and is hastened by the dying of adult worms, either naturally or when they are killed by praziquantel. However, as with anti-egg responses, the responsible immune mechanisms and inducing antigens are not clearly established, nor are any potential regulatory responses known. Finally, a wide variety of immune markers, both cellular and humoral, can be used to demonstrate exposure to schistosomes, and immunologic measurement of schistosome antigens can be used to detect, and thus diagnose, active infections. All three areas contribute to the public health response to human schistosome infections. SRT1720 cost “
“Succinatimonas hippei is a new bacterial species isolated from human feces. Here we report that the growth of S. hippei YIT 12066T depends on CO2 or bicarbonate and the headspace gas produced by microbiota. Genetic defect for carbonic anhydrase in this bacterium suggested a reason for the syntrophic property of CO2 dependency and may suggest an adaptation to its habitat. The use of
culture-independent molecular methods to analyze gastrointestinal (GI) microbiota medroxyprogesterone has allowed more complete and accurate assessment of biodiversity in this ecosystem (1,2). Molecular methods using small subunit ribosomal RNA (SSU rRNA)-based technologies are considered useful for finding potential links between microbes and disease status. However, the results obtained with such approaches should not be considered to be suggestive of anything beyond microbial diversity, as potential functions of microbes cannot always be extracted from SSU rRNA data. To better understand the physiological characteristics and functions of the majority of human GI microbiota, we have been performing several intensive cultivation trials aimed at isolating so-called ‘unculturable’ or ‘as-yet-uncultured’ bacteria from the human GI tract (3–12). To date, we have isolated 17 new species of strictly anaerobic bacteria, including four new genera and two new families.