Multilocus microsatellite marker analysis can provide sufficient resolution for differentiating closely-related
isolates and can be useful for tracking genotypes of interest; additionally, these markers may help identify the source of invasive strains. In this study, seven microsatellite markers successfully genotyped ‘Ca. L. asiaticus’ PLX-4720 in vivo from global populations. Sequence analysis indicated that three of the microsatellites appear to overlap with microsatellites recently developed by Katoh et al. [20]. Various microsatellite length variations were found in ‘Ca. L. asiaticus’ from worldwide collections, with some loci having as many as 30 alleles. Historical evidence reviewed by da Graça [25] suggested that HLB was observed in Guangdong province, China in the late 19th century [26], and later spread to other parts of the country. It is assumed that HLB may have been introduced into China from India along sea trade routes [27]. The first record of HLB-like symptoms, referred to as ‘dieback’, was reported from India in the 18th century [28]; this was later suggested to be HLB [29]. As ‘Ca. L. asiaticus’ has been in Asian countries over a century, the genetic diversity in Asian
populations was expected to be high, due to a longer period of mutation accumulation, population differentiation and natural selection. As hypothesized, a higher degree of genetic diversity for ‘Ca. L. asiaticus’ Liothyronine Sodium ARN-509 was observed in both China and India within the present study (Table 2). In contrast, the lower level of allelic and haploid genetic diversity of ‘Ca. L. asiaticus’ in Florida and Brazil populations are this website consistent with the hypothesis that ‘Ca. L. asiaticus’ populations in these regions have been derived from recent introductions [30]. Human movement of infected plant materials is probably the main cause of long distance dissemination of both ‘Ca. L. asiaticus’-positive psyllids and HLB-affected plant material. The distributions of haplotypes observed in ‘Ca. L. asiaticus’ in this
study did not detect any identical haplotypes from different continents or even from different countries within the same continent (Additional file 1). This result does not exclude the possibility of contemporary migration of ‘Ca. L. asiaticus’ among different countries through the movement of infected plant materials or by the migration of vector psyllids as rapid mutation and selection could lead to deviation of populations from their original sources. The vector, D. citri, has been in Brazil for over 60 years without any sign of HLB until its discovery on 2004 [4, 25]. D. citri was discovered in Florida in Palm Beach, Broward and Martin counties in 1998 and has spread throughout the state since that time [7]. However, it is not clear when ‘Ca. L. asiaticus’ was introduced into Brazil and Florida.