The effect of the crystal plane orientation on the friction-induced nanofabrication was mainly attributed to the different mechanical Apoptosis inhibitor behaviors and bond structures of the various silicon crystal planes. The main conclusions can be summarized as below. (1) Friction-induced nanofabrication can be realized on Si(100), Si(110), and Si(111) surfaces, respectively. The crystal plane orientation has a significant
effect on the hillock formation on silicon surface. Under the same loading condition, the highest hillock was generated on Si(100), while the lowest hillock was formed on Si(111) either in air or in vacuum. (2) The mechanical performance of silicon shows a strong effect on the hillock formation on various silicon crystal planes. The crystal plane with the lower elastic modulus can lead to larger pressed volume, which facilitates more deformation in silicon matrix and higher hillock. (3) The structures of Si-Si bonds play a key role in the hillock formation on various silicon
crystal planes. High density of dangling bonds can cause much instability, facilitating the formation of more amorphous silicon and high hillock during nanoscratching. Acknowledgment The authors are grateful for the financial support from the National Basic Research Program (2011CB707604), Natural Science PI3K Inhibitor Library in vitro Foundation of China (90923017 and 51175441). References 1. Tanaka M: An industrial and applied review of new BCKDHB MEMS selleck products devices features. Microelectron Eng 2007, 84:1341–1344.CrossRef 2. Ko WH: Trends and frontiers of MEMS. Sens Actuators A 2007, 136:62–67.CrossRef 3. Cui Z: Micro-nanofabrication
Technologies and Applications. Beijing: Higher Education Press; 2008. 4. Lin BJ: Optical lithography – present and future challenges. Comptes Rendus Physique 2006,7(8):858–874.CrossRef 5. Cerofolini G (Ed): Nanoscale Devices: Fabrication, Functionalization, and Accessibility from the Macroscopic World. Heidelberg: Springer; 2009. 6. Pires D, Hedrick JL, Silva AD, Frommer J, Gotsmann B, Wolf H, Despont M, Duerig U, Knoll AW: Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 2010, 328:732–735.CrossRef 7. Yu BJ, Dong HS, Qian LM, Chen YF, Yu JX, Zhou ZR: Friction-induced nanofabrication on monocrystalline silicon. Nanotechnology 2009, 20:465303.CrossRef 8. Ebrahimi F, Kalwani L: Fracture anisotropy in silicon single crystal. Mater Sci Eng A 1999, 268:116–126.CrossRef 9. Wang MH, Wang W, Lu ZS: Anisotropy of machined surfaces involved in the ultra-precision turning of single-crystal silicon—a simulation and experimental study. Int J Adv Manuf Technol 2012, 60:473–485.CrossRef 10. Gatzen HH, Beck M: Investigations on the friction force anisotropy of the silicon lattice. Wear 2003, 254:1122–1126.CrossRef 11. Łysko JM: Anisotropic etching of the silicon crystal-surface free energy model. Mat Sci Semicon Proc 2003, 6:235–241.CrossRef 12.