We first derived HKI-272 a partial differential equations model of gas
exchange on a small physiological unit of the lung (approximate to 25 alveoli), which we refer to as a respiratory unit (RU). We next developed a simple model of the acute inflammatory response and implemented its effects within a RU, creating a single RU model. Linking multiple RUs with various ventilation/perfusion ratios and taking into account pulmonary venous blood remixing yielded our lung-scale model. Using the lung-scale model, we explored the predicted effects of inflammation on ventilation/perfusion distribution and the resulting pulmonary venous partial pressure oxygen level during systemic inflammatory stresses. This model represents a first step towards the development of anatomically faithful models of gas exchange and ventilation under a broad range of local and systemic inflammatory stimuli resulting in acute lung injury, such as infection and mechanical strain of lung tissue.
(C) 2010 Elsevier Ltd. All rights BAY 1895344 reserved.”
“Zinc is one of trace elements that play essential roles in several cell functions, and is unquestionably important to the normal health and function of the central nervous system. Growing evidence suggests that Zn(2+) can become a pathogenic agent in certain neurological disease states, such as ischemia, seizures, and trauma. The main role of the Zn(2+) may serve as an endogenous neuromodulator in the brain. In the present study, we used the electrophysiology method to investigate the effects of Zn(2+) on the excitability of hippocampus CA1 region. Our results have demonstrated that the Zn(2+) activates the Wistar rat hippocampal CA1 region network by significantly enhancing the spike rate of the spontaneous firing. In addition, Zn(2+) can increase the intrinsic membrane excitability by enhancing the firing rate and half-width of the evoked action potential. Meanwhile, our results also indicate that Zn(2+) can effectively inhibit voltage-dependent
E7080 concentration potassium currents (both transient outward potassium currents and delayed rectifier potassium currents). On the other hand, Zn(2+) also inhibits excitatory neurotransmitter release by decreasing the inter-event interval and the total charge transfer of the excitatory postsynaptic currents. The present results, in combination with other works, suggest that Zn(2+) can influence neuronal excitability, intrinsic membrane excitability and synaptic transmission in the hippocampus CA1 neurons by multiple mechanisms. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.”
“This paper presents results on the design and analysis of a robust genetic Muller C-element. The Muller C-element is a standard logic gate commonly used to synchronize independent processes in most asynchronous electronic circuits.