4 mM 4-hydroxybenzoate A1501 showed a shorter lag phase and a hi

4 mM 4-hydroxybenzoate. A1501 showed a shorter lag phase and a higher growth rate when cells were grown on the mixture than when benzoate was supplied alone (Figure 8A). Furthermore, under the latter growth conditions, the culture gradually became dark brown in color because of autoxidation of the accumulated catechol (data not shown). However, when the 4-hydroxybenzoate concentration increased to 0.8 mM, growth of A1501

was completely inhibited (Figure 8A). These results indicate that 4-hydroxybenzoate at low concentrations can enhance the ability of A1501 to grow on benzoate. We then evaluated the effect of 4-hydroxybenzoate on the metabolism of benzoate using HPLC. When 4 mM benzoate alone was provided to the culture, it was completely

Salubrinal order consumed within 26 h, and metabolic intermediates were present. When 4 mM benzoate and 0.4 mM 4-hydroxybenzoate were provided together as growth substrates, benzoate was completely PRN1371 consumed within 18 h, while no discernible loss of 4-hydroxybenzoate was detected (Figure 8B). Additionally, analysis of the intracellular metabolites by HPLC revealed accumulation of catechol derived from benzoate both in the presence and absence of 4-hydroxybenzoate in the growth medium. The concentration of catechol reached 0.28 mM when A1501 grew on benzoate alone, whereas the concentration of catechol reached approximately 0.12 mM when both benzoate and 4-hydroxybenzoate were in the growth medium (Figure 8C). Collectively, these results suggest that 4-hydroxybenzoate can significantly enhance the ability of A1501 not only

to degrade benzoate, but also to remove the catechol accumulated from benzoate. Discussion The data presented here reveal that the sequence and organization of the ben, pob, cat, and pca genes in A1501 are very similar to those within other well-studied Pseudomonas strains, raising the question of whether these genes have see more common origins. Increasing evidence indicates that horizontal gene transfer is an efficient mechanism for introducing catabolic pathways into different bacterial genomes [37]. In general, MTMR9 recently acquired transferable genomic regions are associated with insertion sequence elements and mobility-related genes, whereas anciently acquired genomic regions may lose these genetic elements [38]. Furthermore, horizontally acquired DNA regions are usually chromosomally inserted in the vicinity of tRNA or rRNA genes [38]. We also discovered that an rRNA operon is located directly downstream of the ben gene cluster and that a tRNA-Gly gene is located downstream of the pca gene cluster.

Comments are closed.