In addition, it has been emphasised frequently, that while downstream analysis of proteins have improved markedly over the last decade with ever increasing mass spectral analysis see more and software developments, initial sample preparation methods from various microorganisms and fractionation procedures, particularly for low
abundant proteins have lagged behind. Several approaches are being used, one of the most recent being the use of combinational peptide libraries. The technique was used successfully to study cell extracts of E. coli and resulted in a significant increase in the number of proteins that are normally detected and included very low copy number metabolic enzymes [27]. A drawback of this approach is the large volume of starting material required. It is our HKI-272 purchase view based on current sub-cellular fractionation procedures, that LPI™ technology currently provides the widest coverage of outer membrane proteins as demonstrated here for Salmonella Typhimurium. Current studies are aimed at culturing this microorganism in growth conditions more akin to those in vivo to gain further insight into the expression of the membrane proteins
and the role of specific proteins in disease. Methods Bacterial strain and culture conditions Salmonella enterica serovar Typhimurium LT2 (ATCC 700720) was grown aerobically on nutrient broth in triplicate at 37°C with constant shaking at 200 rpm. Bacterial cells from a 500 ml culture were collected in stationary phase (OD600 = 1.2-1.5) via centrifugation at 13 000 g at 4°C for 40 min. The collected cells were washed 3 times
with Sorafenib phosphate buffered saline (PBS; pH 7) and stored at -80°C for further use. Preparation of outer membrane vesicles The following method was adapted from Kaback (1971) [28]. The harvested cells Parvulin were washed three times with Tris buffer containing 20% sucrose (w/v) (Fluka), 30 mM Tris-HCl (GE Healthcare) and 10 mM EDTA (Fluka) at pH 8.0 and collected by centrifugation at 21 000 g for 40 min at 4°C. The washed cells were resuspended in 10 ml Tris/sucrose buffer containing 5 mg ml-1 lysozyme (Sigma Aldrich), and incubated at room temperature for 45 min with gentle shaking. The spheroplasts produced by this procedure were harvested by centrifugation at 21 000 g for 30 min at 4°C. The pellet containing the spheroplasts was resuspended in 10 ml of 10 mM phosphate buffer (pH 7) containing 2 mM MgSO4 (Sigma Aldrich), 10 mg ml-1 ribonuclease A (Sigma Aldrich) and 10 mg ml-1 deoxyribonuclease I (Sigma Aldrich) and incubated at 37°C for 45 min with vigorous shaking. During this step the osmotically induced vesicles on the cell surface detach from the cells (Figure. 1). The unbroken cells were removed by centrifugation at 1000 g, 30 min, 4°C and the supernatant containing the membrane vesicles was kept.