Rheumatoid arthritis (RA) is a progressive systemic autoimmune di

Rheumatoid arthritis (RA) is a progressive systemic autoimmune disease, causing great morbidity. Both focal joint erosions and generalized Palbociclib ic50 osteoporosis result in a disabling disease. The prevalence is 0·5–1% worldwide [1], with a female to male ratio of 3:1, and the prevalence of concurrent osteoporosis is 50% [2,3]. The female sex steroid oestradiol has been shown to be beneficial in postmenopausal osteoporosis, and also to influence the incidence and progression of RA. We have previously reported decreased joint destruction and disease progression in postmenopausal RA patients treated with oestrogen-containing hormone replacement therapy (HRT) [4]. Unfortunately, HRT has been associated

with severe side effects [5], and is no longer recommended for long-term therapy. Therefore, there is a need to find alternative oestrogen-like substances with the beneficial properties, and lacking the side effects. We and others have shown previously that administration of both oestradiol and raloxifene, a selective oestrogen receptor modulator (SERM) approved for the treatment of postmenopausal selleckchem osteoporosis, can ameliorate

collagen-induced arthritis (CIA), a murine model of human RA [6,7]. Even when treatment was initiated in mice with severe, established disease, these effects were substantial [7]. Also, when oestradiol was administered (at doses equivalent to estrus, resulting in serum levels of 400 pg/ml, or 50% of pregnancy levels, with serum levels of 4000 pg/ml) from 7 days prior to immunization until termination, three different mouse models failed to develop arthritis [8]. Doxacurium chloride In addition to the anti-arthritic properties, treatment with raloxifene also

prevented arthritis-induced osteoporosis development [6,7]. CIA and the loss of endogenous oestrogen after ovariectomy (OVX) have been shown to contribute to osteoporosis development in an additive way [9]. In the present study we wanted to investigate whether raloxifene would display anti-arthritic effects with treatment only during the induction phase of CIA, or during the effector phase of the disease. For treatment during the induction phase we used the CIA model, and treated the mice from 2 days pre- to 10 days postimmunization. Treatment during the effector phase was evaluated using the collagen–antibody-induced arthritis (CAIA) model [10]. In CAIA, the introduction of preformed antibodies induces arthritis. Antibodies to collagen II (CII) have been shown previously to be involved in both human and experimental RA [11], and oestradiol has been shown to hamper the disease in CAIA [12]. Oestrogens activate target genes via various signalling pathways, including the classical pathway, in which oestrogen receptors (ER) α and β bind to oestrogen response elements (ERE) on DNA, and thereby promote gene transcription.

Outbred CD1 exhibit either Balb/c-like or C57Bl/6-like spinotrape

Outbred CD1 exhibit either Balb/c-like or C57Bl/6-like spinotrapezius angioarchitecture, predictive

of response to arteriolar ligation. Conclusions:  This collateral capillary arterialization process may explain the reported longer time required for blood flow recovery in Balb/c hindlimb ischemia, as low-resistance blood flow pathways along capillary conduits must be formed (“arterialization”) buy Dasatinib before reperfusion. “
“Please cite this paper as: Al-Khazraji BK, Novielli NM, Goldman D, Medeiros PJ, Jackson DN. A simple “Streak Length Method” for quantifying and characterizing red blood cell velocity profiles and blood flow in rat skeletal muscle arterioles. Microcirculation 19: 327–335, Smoothened inhibitor 2012. Objectives:  To develop a valid experimental method for quantifying blood flow in continuously branching skeletal muscle arterioles, and to derive an empirical relationship between velocity

ratio (VMax/VMean) and arteriolar diameter. Methods:  We evaluated arteriolar trees using IVVM of rat gluteus maximus muscle and developed a method to acquire single fluorescent-labeled RBC velocities across arteriolar lumens to create velocity profiles. These data were used to calculate the blood flow for 37 vessel segments (diameters: 21–115 μm). Results:  Mass balance at arteriolar bifurcations had 0.6 ± 3.2% mafosfamide error. Velocity ratios ranged from 1.35 to 1.98 and were positively correlated with diameter (p < 0.0001), and VRBC profiles were blunted with decreasing diameter. Conclusions:  We present a means for quantifying blood flow in continuously branching skeletal muscle arterioles. Further, we provide an equation for calculating

velocity ratios based on arteriolar diameter, which may be used by others for blood flow calculations. “
“Please cite this paper as: Fedosov, Caswell, Popel and Karniadakis (2010). Blood Flow and Cell-Free Layer in Microvessels. Microcirculation17(8), 615–628. Blood is modeled as a suspension of red blood cells using the dissipative particle dynamics method. The red blood cell membrane is coarse-grained for efficient simulations of multiple cells, yet accurately describes its viscoelastic properties. Blood flow in microtubes ranging from 10 to 40 μm in diameter is simulated in three dimensions for values of hematocrit in the range of 0.15–0.45 and carefully compared with available experimental data. Velocity profiles for different hematocrit values show an increase in bluntness with an increase in hematocrit. Red blood cell center-of-mass distributions demonstrate cell migration away from the wall to the tube center. This results in the formation of a cell-free layer next to the tube wall corresponding to the experimentally observed Fahraeus and Fahraeus–Lindqvist effects.

Neurons in CA2-4 fields and DG, generally spared from classic NFT

Neurons in CA2-4 fields and DG, generally spared from classic NFT pathology development in AD, exhibited markedly increased UBL immunoreactivity in the nucleoplasm in Braak stages III-IV and V-VI AD cases compared to the Braak 0-I-II group. The reason for this change is unknown, but it may be influenced by age differences

between Braak groups, since the Braak stage 0-I-II (non-AD) group trended toward being younger than both the Braak stage III-IV and Braak stage V-VI AD groups. Other factors, including nucleotide polymorphisms in the ubiquilin gene, may contribute to the observed differences and warrant future clinical-genetic-pathological studies. Genetic abnormalities in PLX 4720 UBL-1 were reported to associate with increased risk[20] and age of onset and duration[21] of AD, although this association was not replicated in all studies.[22] Because Braak staged groups represent a continuum, rather than a stepwise progression, of NFT pathology, the large variability in UBL intensity ratios in the Braak stage III-IV group, particularly in the CA1 region, is likely due to variability in the extent of pathologic changes, and UBL expression, in individual

pyramidal neurons. The functional relevance of the changes in the subcellular localization of UBL, and their association with different types of NFT, is 4��8C unknown but it may reflect a response, compensatory or dysregulatory, of the ubiquitin-proteosome system to increased cellular stress HSP tumor due to accumulation of aggregated and heavily phosphorylated proteins, especially

tau. Our observation of increased UBL immunoreactivity in X-34-positive eNFT is particularly intriguing considering that ubiquitin, a major component of NFT paired helical filaments in AD,[23, 24] is largely absent from eNFT.[23, 25, 26] These changes may occur in relation to ubiquitin-proteosome dysfunction or, alternatively, they may reflect altered antigenic profiles of these proteins in eNFT.[27] The observation of UBL immunoreactivity in X-34-positive neuritic plaques in advanced Braak stages further suggests a relationship between UBL and tau changes, and warrants further exploration. Furthermore, the source of the fibers that comprise UBL immunoreactive dystrophic neurites, and the significance of these changes in the pathogenesis of neuritic plaques, is unknown. Further investigation is also warranted regarding the observation of UBL immunoreactive cells with the morphological appearance of microglia and oligodendrocytes in the hippocampus of two AD cases, especially when considering that one case had a family history of AD.

S6b–e) In addition, B cell subsets developing in the NSG–BLT mic

S6b–e). In addition, B cell subsets developing in the NSG–BLT mice were compared to the populations in human blood. As described previously, there are higher selleck compound levels of immature and transitional B cells in the blood of NSG–BLT mice compared

to humans [37]. Together, these results suggest that irradiation is not necessary for B cell development but is required to obtain optimal number of B cells and for Ig production. We next evaluated the development of human innate immune cells in the BLT model established with or without irradiation conditioning (Supporting information, Fig. S7). The gating strategy used to define the human innate immune subsets is shown in Supporting information, Fig. S7a. At 16 weeks post-implant the development of human monocyte/macrophage (CD14+/CD33+), myeloid dendritic cells (mDC, CD11c+/CD33+) and plasmacytoid DC (pDC, CD123+/CD33+)

was assessed in the blood, spleen and bone marrow (Supporting information, Fig. S7b–d). Significantly higher percentages of human monocyte/macrophage were detected in the blood of NSG–BLT mice that had received irradiation compared to non-irradiated NSG–BLT mice, and there was a trend towards increased levels in the spleen and bone marrow, although these differences CAL-101 nmr were not significant (Supporting information, Fig. S7b). The levels of mDC (Supporting information, Fig. S7c) and pDC (Supporting information, Fig. S7d) were similar in irradiated and

non-irradiated NSG–BLT mice. In addition, innate cell subsets developing in the NSG–BLT mice were comparable to the populations in human blood. Together, these results suggest that Urocanase irradiation conditioning of the recipient slightly enhances human macrophage development in NSG–BLT mice but is not necessary for mDC or pDC development. The standard implantation site for thymic and liver fragments in the BLT model is within the subcapsular space of the kidney. However, this procedure is considered survival surgery for the mice and is labour-intensive. As an alternative to the renal capsule, we tested whether implantation of thymic and liver fragments subcutaneously would support high levels of T cell development. NSG mice were irradiated with 200 cGy, implanted with 1 mm3 fragments of human fetal thymus and liver either in the renal subcapsular space or subcutaneously, and then injected i.v. with human HSC derived from the fetal liver. At 18 weeks post-implant the mice were evaluated for total human cell chimerism (CD45+ cells), for human T cell development (CD3+ cells) and for human B cell development (CD20+) in the blood and spleen (Fig. 4a–c). No significant differences were detected for the percentage of CD45+ cells in the blood and spleen (Fig.

[62] Some strains of rotavirus use their NSP1 protein to cause IR

[62] Some strains of rotavirus use their NSP1 protein to cause IRF7 degradation via the proteasome, whereas other strains target IRF3, IRF5 or β-transducin repeat-containing protein (β-TrCP), a component of the E3 ubiquitin ligase complex that activates NF-κB.[63] Finally, the ebolavirus VP35 protein represents an interesting example of IRF7 inhibition: in macrophages and conventional DCs, VP35 interferes with IRF7

activation via the RLR pathway, whereas in plasmacytoid DCs, VP35 does not block IFN production, because this MG-132 ic50 cell type activates IRF7 through the TLR pathway.[64] Hence, non-redundant IFN induction pathways can help an organism to counteract specific virus evasion mechanisms. Viruses can also impair EPZ-6438 research buy IFN gene expression by inducing a general disruption of host cell transcription. The NSs protein from La Crosse encephalitis virus does just this, exploiting specific components of the DNA-damage response to cause the proteasomal degradation of the hyperphosphorylated form of RPB1, a component of cellular RNA polymerase II (RNAP II), allowing it to

selectively silence elongating RNAP II complexes. This does not impede the virus itself, as RNAP II is not required for the transcription or replication of the La Crosse encephalitis virus genome.[65] The second step of the biphasic IFN response, where secreted IFN binds its receptor (IFNAR) and activates ISG induction, is also actively disrupted by viruses. Although the exact mechanism is unknown, ORF54, a functional dUTPase from murine γ-herpesvirus-68, causes the degradation of the IFNAR1 protein, even in the absence of dUTPase enzymatic activity.[66] Several other viruses indirectly

target IFNAR, by activating alternative signalling. For instance, HCV induces the Ras/Raf/MEK pathway, which increases the phosphorylation of a destruction motif in the cytoplasmic tail of IFNAR1, leading to its ubiquitin-dependent endocytosis.[67] The Kunjin strain of West Nile virus may employ a similar strategy, as the viral proteins NS4A and NS4B block IFN signalling by stimulating the unfolded protein response,[68] possibly Y-27632 2HCl via IFNAR degradation.[69] Interferon binding to IFNAR activates the Janus family protein kinases (JAKs) Tyk2 and Jak1, inducing site-specific phosphorylation of tyrosine residues in signal transducers and activation of transcription 1 (STAT1) and STAT2, leading to their activation and formation of a heterotrimeric complex containing IRF9, known as IFN-stimulated gene factor-3 (ISGF3) (Fig. 3).[70] Each stage of the JAK/STAT signalling pathway is disrupted by viral proteins. Human metapneumovirus reduces Jak1 and Tyk2 mRNAs and proteins,[71] leading to decreased IFNAR cell surface expression by way of increased internalization but not degradation, possibly through the loss of Tyk2.

In addition, an important increase of IFNb gene expression was ob

In addition, an important increase of IFNb gene expression was observed (PAU-B16 ×5; Lipo-PAU ×57) (Supporting Information Fig. 1B and C). IFN-β levels were then measured in culture supernantants by ELISA and, as it can be observed in Figure 5A, it showed

a two fold increase when poly A:U was used as stimulus. We also tested the ability of B16-CM and PAU-B16 CM to modulate ITF2357 supplier IL-12 secretion. When BMDCs were incubated with CpG in the presence of B16-CM, the secretion of IL-12 was significantly inhibited. However, this inhibitory effect on IL-12 secretion was partially reverted when BMDCs were stimulated with CpG in the presence of PAU-B16 CM (Supporting Information Fig. 1D). Complexing poly A:U with Lipo-PAU not only generated elevated levels of IFN-β (>1000 pg/mL) but also induced higher levels

of apoptosis Selleckchem Antiinfection Compound Library (data not shown). As it can be seen in Figure 5B and C, poly A:U complexed with PEI neither affected the proliferation rate nor the apoptosis levels of the tumor cells. Then, PAU-B16 cells were inoculated into wt and TLR3−/− mice. A significant inhibition of tumor growth was observed when tumors were induced by PAU-B16 cells compared to the growth of those induced by nonstimulated cells (B16) (Fig. 5D and E). Since inhibition of tumor growth was observed in both mouse strains (wt and TLR3−/−), we exclude an effect of remnant poly A:U on APCs from the host and hypothesized that Carnitine palmitoyltransferase II a direct effect of poly A:U on B16 cells was responsible for the inhibition observed. These results indicate that poly A:U signaling on B16 cells induce the production of IFN-β in vitro and that tumors elicited by PAU-B16 cells showed a diminished growth compared to those elicited by nonstimulated cells in both wt- and TLR3-deficient mice. To analyze if type I IFN produced by PAU-B16 could be playing a role in vivo, we inoculated B16 or PAU-B16 cells into mice lacking the IFNAR1 subunit of the type I IFN receptor. Inhibition of tumor growth was observed only in WT mice bearing PAU-B16 tumors (Fig. 6A). Thus, IFN-β signaling is involved in the retardation

of tumor growth observed. To explore whether TLR3 on tumor cells play a role in therapeutic settings, we carried out local TLR3 stimulation by treating B16 tumors with PEI-PAU in C57BL/6 and TLR3-deficient mice once tumors became visible (Fig. 6B). In both strains, a significant inhibition of tumor growth was observed; interestingly, the local stimulation of TLR3 present on tumor cells was enough to delay tumor growth in TLR3−/− mice. Altogether, our results support the hypothesis that type I IFNs produced by poly A:U-stimulated B16 cells, even if secreted in a transient manner, could modify the local environment at the site of tumor cell inoculation, improving DC function and the antitumoral immune response, as we had previously reported in a similar experimental model using TLR4 ligands [18, 19].

Early withdrawal of ESRD patients

Early withdrawal of ESRD patients selleck compound within 3 years after starting of PD therapy was clearly decreased from 50.9% in our previous study to ∼46% against the total population of withdrawal from PD therapy. Compared with our previous study about the Tokai PD registry, incidence of PD-related peritonitis and withdrawal from PD therapy caused by PD-related peritonitis

were clearly decreased. Conclusion: In the Tokai area of Japan, we recognized that PD-related peritonitis was still one of important complications to prevent long-term PD therapy for ESRD patients. However, having carefully educated PD patients and medical staffs, it might be improved prognosis of PD patients in this study. FERRARI PAOLO1,2, WOODROFFE CLAUDIA1, FILDER SAMANTHA3, D’ORSOGNA LLOYD3 1Department of Nephrology, Fremantle Hospital, Perth, Western Australia, Australia; 2School of Medicine and Pharmacology, University of Western Australia, Australia; 3Department of Immunology, Royal Perth Hospital, Perth, Western learn more Australia Introduction: Kidney paired donation (KPD) is a strategy increasingly used in live donor kidney transplantation to overcome the immunological barriers of HLA or blood group incompatibility, when directed live donor transplantation is not an option because of high level donor-specific antibody (DSA) or anti-blood group antibody

(ABGAb) titre. Methods: A single national KPD program was established in Australia in 2010 and herein we analyse the

number of enrolled pairs, matched recipients, identified chains, and kidney transplants performed within the first 3 years of the program. In the Australian program, virtual crossmatch Ribose-5-phosphate isomerase is used to allocate suitable donors to recipients; matching is based on acceptable mismatches and donors are excluded from matching to recipients with DSAs > 2000 mean fluorescence intensity (MFI). Acceptance of ABO-incompatible donors is allowed in cases where ABGAb titres are deemed amenable to removal by apheresis or immunoabsorption. Results: Thirteen quarterly match runs including 175 pairs and 2 altruistic donors were performed between October 2010 and October 2013. Incompatibility due to DSA accounted for 87% of the listed pairs and 52% were also ABO-incompatible to their co-registered donor. Median calculated panel-reactive antibody (cPRA) in registered recipients was 78% (mean 65 ± 36%). Matches were identified in 125 (71%) patients and 121 of these offers were accepted for crossmatching. A negative crossmatch was reported in 97% of cases; crossmatch positive results were found only in recipients with DSA > 2000MFI. Thirty-four (31%) crossmatch negative patients did not proceed to transplantation after their first match and the major cause of chain breakdown was medical unsuitability of the recipient. Eventually, 80 (65%) patients received a KPD transplant and 34% of these had a cPRA >95%.

Given that the content of IgG in every reaction was 350-fold high

Given that the content of IgG in every reaction was 350-fold higher than that of H-gal-GP and that the antibody titres for the sera sources of pIgG were equivalent to those of npIgG [as shown by Smith et al. (9)], the experiment measures the true effect of H-gal-GP binding IgG from each source on haemoglobin digestion. Interestingly, whilst antibody inhibition of H-gal-GP catalysed haemoglobin digestion was detected at pH 5·0, no effect was seen if the complex and the antibodies were pre-incubated at pH 4·0 or 7·4 (even

though the antibodies bound to the H-gal-GP at both these pHs). Others working with Ancylostoma caninum also reported successful antibody inhibition Erlotinib nmr of protease activity. This inhibition was measured at pH 5·5 even though maximum rates of reaction were obtained under more acidic conditions at pH 3·5 (17,19–23). To our knowledge, the pH of the intestinal contents of Haemonchus has not been published, presumably because of the technical difficulties of obtaining a truly physiological sample. However, the reported pH of Schistosoma mansoni is between 6·0 and 6·4 (24,25). This would not be an optimal pH for protease digestion of blood proteins which operates most effectively under more acidic conditions. It has been suggested that these reactions may take place in luminal or cellular microenvironments which are more acidic or that the gradual decline in pH of the gut may be a mechanism by which

worms regulate the activity of each of these enzymes and hence the Ceritinib systematic degradation of blood proteins (26,27,28).

If the current Teicoplanin results accurately reflect what happens in vivo, it follows that optimum reaction conditions must exist within the Haemonchus gut to permit the specific inhibition of H-gal-GP by the antibody. The results generated by the present experiments support the hypothesis put forward in the introduction and suggest the following as the mechanism of protection in sheep immunized with H-gal-GP. Immunization with this antigen generates high titre circulating antibodies. When Haemonchus infect a sheep immunized with H-gal-GP, they ingest these antibodies with their blood meal. The antibodies inhibit the ability of H-gal-GP to digest haemoglobin and other blood proteins, leading to malnutrition and or starving of the parasites. The worms lay fewer eggs (9) and, being too weak to maintain their presence on the abomasal mucosa, get expelled through the pylorus by normal peristaltic activity. We thank David Knox and George Newlands for their academic input and Stephen Smith for technical assistance. “
“Colorado State University College of Veterinary Medicine & Biomedical Sciences, Fort Collins, CO, USA Cell & Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Vienna, Austria Borrelia burgdorferi, the causative agent of Lyme disease, cycles in nature between a vertebrate host and a tick vector.

Groups of six mice were immunized at 3-week intervals (on Weeks 0

Groups of six mice were immunized at 3-week intervals (on Weeks 0, 3 and 6) and blood samples collected

on Weeks 5 and 8. ELISAs to measure the titers Cabozantinib price of OVA-specific IgG subtypes were performed similarly, with minor modifications. In this instance, the initial dilutions of serum samples were 1:3000 and 1:100 for the IgG1 and IgG2a antibody-binding assays, respectively, and in the next step, the secondary antibodies (goat anti-mouse IgG1 and IgG2a [Southern Biotech, Birmingham, AL, USA]; 1:4000) were assessed. Figure 5a shows that at Week 5 there were no significant differences in OVA-specific IgG1 or IgG2a titers compared with controls among mice immunized with pyriproxyfen and alum. Figure 5b shows that pyriproxyfen significantly enhanced OVA-specific IgG2a titers compared to controls at 8 weeks (eightfold greater; P = 0.002), whereas the difference learn more in the OVA-specific IgG1 immune response compared to the control remained insignificant. As expected, immunization with OVA containing alum resulted in a significantly greater OVA-specific IgG1 titer (fourfold greater, P = 0.01) than in the control at 8 weeks (Fig. 5b). These observations suggest that the IgG subtypes assessed, IgG2a and IgG1, reached significantly increased titers after immunization three times with pyriproxyfen

or alum in OVA. The titers of IgE were also measured to determine the effect of pyriproxyfen on IgE production. For this, mice were immunized three times with OVA (in 5% ethanol) alone or with pyriproxyfen (15 mM) or alum and the titers from of IgE measured. Groups of six mice were immunized at 3 week intervals (Weeks 0, 3 and 6) and blood samples collected on Weeks 8. ELISA for measuring the IgE titer was performed according to a method similar to that

described above except the initial dilution of serum samples was 1:10 for the IgE antibody binding assay and the secondary antibody used was goat anti-mouse IgE (Southern Biotech) (1:4000). As shown in Figure 5c, there were no significant differences in OVA-specific IgE titer between mice immunized with OVA plus pyriproxyfen and controls. Compared to the controls, at 8 weeks OVA-specific IgE titers were increased only in mice immunized with OVA containing alum (P = 0.01). Cytokine profiles were also checked to confirm the basis for immune responses after the addition of pyriproxyfen. Two groups of five mice were immunized on Weeks 0, 3 and 6 and injected with OVA (in 5% ethanol) with or without pyriproxyfen (15 mM) and alum, prior to spleen collection on Weeks 3 and 8 and measurement of cytokine concentrations by sandwich ELISA. The spleens were dissected out from the mice under aseptic conditions. Single-cell suspensions were prepared by homogenizing each spleen in 3 mL of RPMI 1640 medium (Sigma–Aldrich) followed by centrifugation for 5 mins at 1200 rpm at 4°C.

Again, this adds impetuous to the need for clinical intervention

Again, this adds impetuous to the need for clinical intervention trials with supplement of the circulating

25-OHD pool, which may be less harmful than supplementation with active vitamin D. Currently there is growing interest in the phosphaturic bone-hormone fibroblast growth factor 23 (FGF-23), which acts by binding to a membrane Fulvestrant purchase bound α-Klotho-FGF receptor 1c complex in the distal tubules of the kidney, and by an unknown signalling mechanism reduces phosphate reabsorption in the proximal tubules.133 FGF-23 also acts as a negative regulator of PTH secretion by the parathyroid glands, and also directly inhibits 1,25-OHD production in the kidneys by reducing CYP27B1 activity.133 FGF-23 levels are elevated in early kidney disease, FK506 price and in various observational studies have shown association with vascular calcification, increased left ventricular mass in all stages of CKD, and importantly is an independent predictor of mortality in incident dialysis patients.134 It has been suggested that the

early changes in FGF-23 concentrations to maintain a normal serum phosphate in CKD may explain the alteration in vitamin D metabolism observed and could be the underlying causative factor for increased cardiovascular risk, not abnormal vitamin D metabolism per se. However, to date no Klotho protein complex has been isolated in any tissue pertinent to the cardiovascular system outside the kidneys, and in response to the supposition that supraphysiological levels of FGF-23 encountered

could act in a non-receptor driven fashion, it should be noted that in Methamphetamine non-renal conditions associated with excessive FGF-23 (e.g. X-linked hypophosphataemia or tumour-induced osteomalacia) notable increases in cardiovascular risk are not encountered. This is a growing area of research attention and more data should be available in the near future. Patients with CKD are at significant risk of cardiovascular disease, beyond that of the normal population, and this is not fully explained by the traditional Framingham risk factors. Vitamin D deficiency is increasingly common as CKD progresses, for a variety of reasons. Experimental and clinical studies suggest that vitamin D may improve cardiovascular risk through such diverse mechanisms as improved glycaemic control, anti-inflammatory actions, enhanced endothelial function, decreased atherosclerosis and atherogenesis, suppression of the RAS, reduction of proteinuria, and improved cardiovascular physiology (summarized in Fig. 2).