The graphitic carbon contents of the GHCS particles are estimated

The graphitic carbon contents of the GHCS particles are estimated to be approximately 58% compared to the known standard [12]. Since the graphitic nature of the carbon is closely related with its electrical conductivity, GHCS was utilized as a carbon support to prepare a sulfur/carbon nano-composite electrode. The high graphitic nature of GHCS facilitates a fast electron transport to the reaction site where both sulfur and Li2S are electrically insulating. The nano-composite was prepared by heating the homogeneous mixture of sulfur and GHCS to 155°C for 6 h in vacuum oven to let the sulfur melt smear into the inner part of hollow carbon

[4]. Figure  4a,b shows that the morphology of the sulfur/carbon composite is nearly identical with the initial hollow carbon sphere, and the bulk sulfur particles were not observed from the SEM measurement, which indicates that sulfur imbibed into the hollow carbon sphere. The XRD pattern (Figure  selleck compound 4c) of the nano-composite shows the absence of the initial sulfur Selleckchem JPH203 pattern, which implies that the sulfur may exist in an amorphous phase after the impregnation. The presence of sulfur in the composite was verified by the EDX line profiling shown in Figure  5, where sulfur is seen as a separate inner layer located inside the carbon nano-shell. From the TGA analysis (Figure  4d), the sulfur contents in the nano-composite

are estimated to be about however 60%, consistent with the targeted composition. It is noteworthy that the initial amount of sulfur in the composite should be determined considering the volume expansion of the active material (S8 to Li2S) on the electrode upon Selleck Salubrinal lithiation [8]. The encapsulation of sulfur within the carbon shell also has a beneficial effect on suppressing the shuttle reaction by confining soluble long-chain polysulfides (Li2S8 and Li2S6) inside the carbon sphere. From Figure  6a, the electrochemical cycling of the nano-composite cathode shows the initial discharge capacity of 1,300 mAh g−1 at C/10, keeping at 790 mAh g−1 (0.5 C) even after 100 cycles.

In Figure  6b, the comparison of discharge–charge curves upon cycling indicates that capacity loss during the discharge occurs mainly due to the difficulties in converting Li2S2 to Li2S in a solid state, as the plateau near 2.05 V shortens, and the overpotential remains unchanged as the cycle proceeds. Figure  7 shows the electrochemical performance of sulfur/GHCS cathode in high current rates. The discharge capacity even at a high rate at 3 C is observed to be 425 mAh g−1, which is five times larger than the value (81 mAh g−1) from the nano-composite cathode by simple ball milling of sulfur and carbon black [9], although they have similar initial discharge capacities at low rate of C/10. The good electrical conductivity of the graphitic wall of GHCS promotes an easy transport of electrons to the sulfur located inside the carbon shell (Figure  7b).

avium) 2 6

± 2 2 vacuoles Exocyst M chimaera 3 6 ± 2 6 v

avium) 2.6

± 2.2 vacuoles Exocyst M. chimaera 3.6 ± 2.6 vacuoles Exocyst, cytoplasm M. intracellulare 4.6 ± 4.8 vacuoles Exocyst, Endocyst M. colombiense 5.7 ± 6.2 vacuoles Exocyst, cytoplasm M. arosiense 9.4 ± 15.2 vacuoles Exocyst Moreover, we observed that all MAC species can survive within such A. polyphaga cyst. This occurrence did not merely result from the potential contamination of the amoeba by extra-amoebal mycobacteria, since we destroyed any MAC organism left on the surface of cysts by incubating the cysts in HCl, a method previously demonstrated to kill remaining trophozoites, immature cysts and extra-amoebal M. avium [21]. We checked the efficacy of this process by incubating the rinsing buffer on Middlebrook and found no growth of mycobacteria, which indicated selleckchem that the HCl had indeed destroyed any extracystic MAC organisms. The fact that all of the MAC species survived in the exocyst may be relevant to the persistence of these organisms

in the environment despite adverse conditions. Non-tuberculous mycobacteria, including M. avium, have been shown to persist up to 26 months in drinking water systems despite filtration and ozonation [45]. Also, M. intracellulare and other non-tuberculous mycobacteria have been shown to be protected against 15 mg/liter of free-chlorine for 24 hours by entrapment within A. polyphaga cysts [3]. Therefore, free-living amoeba cysts may be a “”Trojan horse”" for MAC organisms and Dabrafenib price protect them from adverse environmental conditions, including high concentrations of chlorine, as previously reported for other environmental mycobacteria. Conclusion The Sucrase data presented herein on MAC species illustrate that survival within the amoebal exocyst is a significant feature of environmental mycobacteria. This particular location, preserving mycobacteria from adverse environment, nevertheless allow them to rapidly escape from the amoebal cyst. The mechanisms for such unique location remain to be established in environmental mycobacteria. Methods Mycobacterium strains M. avium subsp. avium ATCC 25291T, M. chimaera DSM 446232T,

M. colombiense CIP 108962T, M. arosiense DSM45069T [33], M. marseillense CSURP30T, M. timonense CSURP32T and M. bouchedurhonense CSURP34T [35] reference strains that were previously identified by 16S rRNA and rpoB gene sequencing [34] were subcultured on Middlebrook 7H10 agar (Becton Dickinson, Le Pont de Claix, France) for 7 days at 30°C under a 5% CO2 atmosphere. Cells were buy SP600125 washed in 1.5 ml phosphate buffered saline (PBS), pH 7.3, by centrifugation at 8,600 g, and the inoculum was adjusted to 106 bacteria/ml in PBS. Infection of amoeba The A. polyphaga strain Linc-AP1 was obtained from T. J. Rowbotham, Public Health Laboratory, Leeds, United Kingdom and cultured at 28°C for 3 days in 150 cm3 culture flasks (Corning, New York USA) that contained 30 ml PYG broth [46]. Amoebal cells were harvested by centrifugation at 500 g for 10 min.

Benoit St-Pierre, Department of Animal Science, University of

Benoit St-Pierre, Department of Animal Science, University of Salubrinal cost Vermont, for technical advice; the Vermont Fish and Wildlife Department for their help in sample collection logistics; and Terry Clifford, Archie Foster, Lenny Gerardi, Ralph Loomis, Beth and John Mayer, and Rob Whitcomb for collection of samples. Electronic supplementary material Additional

file 1: Table S1. Genus/Identifier and GenBank # of sequences in selected families, found in all rumen samples (n = 8), sequences are non-exclusive to the rumen. (DOCX 22 KB) Additional file 2: Table S2. Genus/Identifier and GenBank # of sequences in selected families, found in all colon samples (n = 6), sequences are non-exclusive to the colon. (DOCX 22 KB) References 1. Schwartz CC, Regelin WL, Franzmann AW: Estimates of digestibility of Birch, Willow, and Aspen mixtures in moose. J Wildl Manage 1988, 52:33–37.CrossRef 2. Routledge RG, Roese J: Moose winter diet selection in central Ontario. Alces 2004, 40:95–101. 3. Belovsky GE: Food plant selection by a generalist herbivore: the moose. Ecology 1981, 64:1020–1030.CrossRef 4. Belovsky GE, Jordan PA: Sodium dynamics and adaptations of a moose population. J Mammal 1981, 62:613–621.CrossRef 5. Alexander CE: The status and management of moose in Vermont. Alces 1993, 29:187–195. 6. Koitzsch KB: Application of a moose habitat suitability index model to Vermont wildlife

management units. Alces 2002, 38:89–107. 7. 2009 Vermont Wildlife Harvest Report. Waterbury, VT: Moose; 2009. 8. 2007 Vermont Combretastatin A4 mouse Wildlife Harvest Report. Waterbury,

VT: Moose; 2007. 9. Clauss M, Fritz J, Bayer D, Nygren K, Hammer S, Hatt J-M, Südekum K-H, Hummel J: Physical characteristics of rumen contents in four large ruminants of different feeding type, the addax (Addax nasomaculatus), bison (Bison bison), red deer (Cervus elaphus) and moose (Alces alces). Comp Biochem Physiol, A 2009, 152:398–406.CrossRef 10. Stevens CE, Hume ID: Comparative physiology of the vertebrate digestive system. Second. New York City: Cambridge University; 1995. 11. Janssen PH: Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. selleck compound Anim Feed Sci Technol 2010, 160:1–22.CrossRef 12. Baldwin RL, Allison MJ: Rumen metabolism. J Anim Sci 1983, 57:461–477.PubMed 13. Janssen PH, Kirs M: Structure of the archaeal community of the rumen. Appl Envir Microbiol 2008, 74:3619–3625.CrossRef 14. Dehority BA: Microbes in the foregut of arctic ruminants. In Control of digestion and metabolism in ruminants: Proceedings of the Sixth International Selleck BI 10773 Symposium on Ruminant Physiology held at Banff, Canada, September 10th-14th, 1984. Edited by: Milligan LP, Grovum WL, Dobson A. Englewood Cliffs: Prentice-Hall; 1986:307–325. 15. Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL: Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci USA 2007, 104:299–304.PubMedCrossRef 16.

CrossRef 25 Silversmit G, Depla D, Poelman H, Marin GB, De Gryse

CrossRef 25. Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R: An XPS study on the surface Selleckchem 8-Bromo-cAMP reduction of V 2 O 5 (001) induced by Ar + ion bombardment. Surf Sci 2006, 600:3512–3517.CrossRef 26.

Sun M, Cui X: Anodically grown Si–W codoped TiO 2 nanotubes and its enhanced visible light photoelectrochemical response. Electrochem Commun 2012, 20:133–136.CrossRef 27. Cong Y, Zhang J, Chen F, Anpo M: Synthesis and RG-7388 price characterization of nitrogen-doped TiO 2 nanophotocatalyst with high visible light activity. J Phys Chem C 2007, 111:6976–6982.CrossRef 28. Kuo Y-Y, Li T-H, Yao J-N, Lin C-Y, Chien C-H: Hydrothermal crystallization and modification of surface hydroxyl groups of anodized TiO 2 nanotube-arrays for more efficient photoenergy conversion. Electrochim Acta 2012, 78:236–243.CrossRef 29. Kontos AI, Arabatzis IM, Tsoukleris DS, Kontos AG, Bernard MC, Petrakis DE, Falaras P: Efficient photocatalysts by hydrothermal treatment of TiO 2 . Catal Today 2005, 101:275–281.CrossRef

30. Livraghi S, Paganini MC, Giamello buy BAY 63-2521 E, Selloni A, Di Valentin C, Pacchioni G: Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc 2006, 128:15666–15671.CrossRef 31. Nakano Y, Morikawa T, Ohwaki T, Taga Y: Deep-level optical spectroscopy investigation of N-doped TiO 2 films. Appl Phys Lett 2005, 86:132104–132104. 132103CrossRef 32. Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E: Characterization of paramagnetic species in N-doped TiO 2 powders by EPR spectroscopy and DFT calculations. J Phys Chem B 2005, 109:11414–11419.CrossRef 33. Nambu A, Graciani J, Rodriguez J, Wu Q, Fujita E, Sanz JF: Dichloromethane dehalogenase N doping of TiO 2 (110): photoemission and density-functional studies. J Chem Physics 2006, 125:094706.CrossRef 34. Kaneco S, Katsumata H, Suzuki T, Ohta K:

Electrochemical reduction of CO 2 to methane at the Cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts. Energy Fuel 2006, 20:409–414.CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions DDL carried out the synthesis, characterization, and photocatalytic reduction experiments. ZHZ participated in the synthesis and SEM characterization experiments. QYL and XDW participated in the XPS and Raman characterizations. MZ and JJY participated in the design and preparation of the manuscript. All authors read and approved the final manuscript.”
“Background One-dimensional zinc oxide (ZnO) nanostructures have attracted considerable attention within the last decade because of unique characteristics such as large aspect ratio, high electron mobility, and electrical and optical anisotropy [1, 2]. Their potential applications in various functional devices, including sensors, solar cells, photodetectors, etc., have been noted [3, 4].

Considering just the fauna, mass extinctions can take place, resu

Considering just the fauna, mass extinctions can take place, resulting in the loss of an unprecedented number of endemic species, before they were even known to science (Quartau 2008). Additionally, we should also consider the ecological consequences both for humankind, with the breaking of ecological services, as well as for all other fauna to some extent dependent on the lost biodiversity. Among such ecological services are the maintenance check details of the

nutrient cycle and soil fertility, the production of food, fuel and medicines, the regulation of hydric resources, air and climate (Commission of the European Communities 2006), and the control of pests or diseases (Price 1987). These roles played by the natural systems highlight how important biodiversity JNJ-64619178 is for selleck chemicals llc sustainable development and general human well-being. Returning to the example of tardigrades, global warming poses the greatest menace to the freshwater species. Rebecchi et al. (2009) recently demonstrated that the limnic species Borealibius zetlandicus is intolerant to

desiccation. In the case of this limitation being shared by other limnic species, they can become extinct in temperate areas such as Southern Europe, where future higher temperatures may turn permanent rivers, ponds and lagoons into temporary ones. The eventual verification that strictly freshwater species are desiccation intolerant should not come as a surprise since the ability to undergo anhydrobiosis is an adaptation of the terrestrial tardigrades and most marine tardigrades are Vitamin B12 known to be desiccation intolerant (Ramazzotti and Maucci 1983). That does not mean, however, that the terrestrial species cannot be endangered by the

climatic changes, since their desiccation tolerances have been proved to differ from one climatic region to another (Horikawa and Higashi 2004), and local adaptation to current climatic patterns is a decisive factor in the current geographic distribution of tardigrades (Faurby et al. 2008; Pilato 1979; Pilato and Binda 2001). In marine environments, tardigrades can be found anywhere, from deep sea floors to beaches, dwelling in the sediments. However being one of the main groups comprising meiofauna, their ecological importance is still poorly understood. On beaches, species distribution follows a tide influenced gradient (Kinchin 1992; Morgan and Lampard 1986). Considering the expected rising of the sea level as yet another consequence of global warming, the species distribution pattern can be totally disrupted along worldwide shores, wherever beaches become permanently flooded. This could mean the loss of immense habitat areas that are vital for the survival of this and other faunal groups. Adrianov (2004) estimates meiofauna to be composed of 20–30 million species, so it is not difficult to imagine how a swift change in the sea level would affect many animal species inhabiting the current tidal zone.

Appl Environ Microbiol 2005,71(7):4153–5 CrossRefPubMed 31 Firme

Appl Environ Microbiol 2005,71(7):4153–5.CrossRefPubMed 31. Firmesse OA, Mogenet AJL, Bresson JLG, Corthier GJP, Furet JP:Lactobacillus rhamnosus R11 consumed in a food supplement survived human digestive transist without modifying microbiota equilibrium PLX4032 mouse as assessed by real time Polymerase Chain Reaction. J Mol Microbiol Biotechnol 2008, 14:90–99.CrossRefPubMed 32. Lyons SR, Griffen AL, Leys EJ: Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J Clin Microbiol 2000,38(6):2362–5.PubMed

Authors’ contributions DM, FL and JPF carried out all PCR experiments. OF performed statistical studies. HS and VDG helped to draft the manuscript with the assistance of all authors. JD and GC conceived and coordinated the study. All authors read and approved the manuscript.”
“Background Streptococcus pneumoniae is one of the main aetiological agents of invasive infectious disease. Penicillin-resistant pneumococci were first observed in the 70s, and resistance to penicillin and multidrug-resistance have since then increased worldwide. Cell-wall biosynthetic enzymes named Penicillin Binding Proteins (PBP) are the targets for β-lactam antibiotics; mutations in these proteins constitute a major mechanism of resistance in clinical isolates. In laboratory strains, murMN, ciaRH and Trametinib clinical trial cpoA genes are also involved in penicillin susceptibility

suggesting their involvement in cell wall metabolism [1–3]. One of the first steps of cell wall biosynthesis is catalysed by the

phosphoglucosamine mutase GlmM [4]. In Escherichia coli, GlmM is activated by phosphorylation and it has been shown, in vitro, that GlmM of S. pneumoniae is a substrate for the serine/threonine PSI-7977 mouse kinase Stk, suggesting a role for StkP in cell wall metabolism [5, 6]. StkP protein from S. pneumoniae contains a eukaryotic kinase domain (Hanks kinase domain) and a PASTA (penicillin-binding protein and serine threonine kinase) domain signature only found in prokaryotes and putatively involved in cell wall sensing [7]. In this study we evaluate the role of StkP in β-lactam susceptibility both in “”the model laboratory strain Cp1015″” and in natural clinical isolates carrying different PBP alleles. Methods Bacterial strains, Montelukast Sodium plasmids and growth conditions The plasmids and strains used in this study are described in Table 1[8]. Escherichia coli was grown in LB (Difco, Sparks, Maryland) supplemented or not with ampicillin (100 μg ml-1) (Atral, Castanheira do Ribatejo, Portugal). S. pneumoniae clinical isolates were grown at 35°C on Columbia agar plates supplemented with 5% horse blood (Biomerieux, Carnaxide, Portugal), in an atmosphere enriched with 5% CO2. Serotyping was performed by the Quellung reaction with antisera produced by the Statens Seruminstitut, Copenhagen, Denmark [9].

Mater Lett 2012, 72:25–28 CrossRef 25 Xu C, Lee J-H, Lee J-C, Ki

Mater Lett 2012, 72:25–28.CrossRef 25. Xu C, Lee J-H, Lee J-C, Kim B-S, Hwang SW, Whang MK-0518 manufacturer D: ElectroMK-2206 purchase chemical growth of vertically aligned ZnO nanorod arrays on oxidized bi-layer graphene electrode. Cryst Eng Comm 2011,13(20):6036–6039.CrossRef 26. Sugunan A, Warad HC, Boman M, Dutta J: Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine. J Sol–gel Sci Techn 2006,39(1):49–56.CrossRef 27. Rusli NI, Tanikawa M, Mahmood MR, Yasui K, Hashim AM: Growth of high-density zinc oxide nanorods

on porous silicon by thermal evaporation. Materials 2012,5(12):2817–2832.CrossRef 28. Tan ST, Sun XW, Yu ZG, Wu P, Lo GQ, Kwong DL: p-type conduction in unintentional carbon-doped ZnO thin films. Appl Phys Lett 2007, 91:072101.CrossRef 29. Balucani M, Nenzi P, Chubenko E, Klyshko A, Bondarenko V: Electrochemical and hydrothermal deposition of ZnO on silicon: from continuous films to nanocrystals. J Nanopart Res 2011,13(11):5985–5997.CrossRef 30. Hassan NK, Hashim MR, Mahdi MA, Allam NK: A catalyst-free growth of ZnO nanowires on Si (100) substrates: effect of substrate position on morphological, structural and optical properties. ECS J Solid State Sci Technol 2012,1(2):86-P89.CrossRef

31. Hassan NK, Hashim MR, Al-Douri Y, Al-Heuseen K: Current dependence growth of ZnO nanostructures Thiazovivin order by electrochemical deposition technique. Int J Electrochem Sci 2012, 7:4625–4635. 32. Liu Z, Ya J, Xin Y, LE : Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers. Appl Surf Sci 2009,255(12):6415–6420.CrossRef 33. Mahmood K, Park SB, Sung HJ: Enhanced

photoluminescence, Raman spectra and field-emission Rutecarpine behavior of indium-doped ZnO nanostructures. J Mater Chem C 2013,1(18):3138–3149.CrossRef 34. Amin G, Asif MH, Zainelabdin A, Zaman S, Nur O, Willander M: Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J Nanomater 2011, 2011:1–9.CrossRef 35. Xu S, Wang ZL: One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 2011,4(11):1013–1098.CrossRef 36. Zhang RH, Slamovich EB, Handwerker CA: Controlling growth rate anisotropy for formation of continuous ZnO thin films from seeded substrates. Nanotechnology 2013,24(19):195603.CrossRef 37. Baruah S, Dutta J: Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 2009,10(1):013001.CrossRef 38. Ul Hasan K: Graphene and ZnO Nanostructures for Nano-Optoelectronic & Biosensing Applications. Linköping University Electronic Press: Doctoral Thesis, Linköping University; 2012. Competing interests The authors declare that they have no competing interests. Authors’ contributions NSAA designed and performed the experiments, participated in the characterization and data analysis of FESEM, EDX, XRD, and PL, and prepared the manuscript. MRM participated in the PL characterization. KY participated in the XRD characterization and revision of the manuscript.

Phys Rev B 2008, 78:205425 CrossRef 13 Zhang Y, Tang TT, Girit C

Phys Rev B 2008, 78:205425.CrossRef 13. Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F: Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459:820.CrossRef 14. Kuzmenko AB, Crassee I, van der Marel D, Blake P, Novoselov KS: Determination of the gate-tunable band gap and tight-binding parameters in bilayer graphene using infrared spectroscopy. Phys Rev B 2009, 80:165406.CrossRef find more 15. Craciun MF, Russo S, Yamamoto M, Oostinga JB, Morpurgo AF, Thrucha S: Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat Nanotechnol 2009, 4:383.CrossRef 16. Malard LM, Pimenta

MA, Dresselhaus G, Dresselhaus MS: Raman AZD2014 chemical structure spectroscopy in graphene. Phys Rep 2009, 473:51.CrossRef 17. Calizo I, Bejenari I, Rahman M, Liu G, Balandin AA: Ultraviolet Raman microscopy of single and multilayer graphene. J Appl Phys 2009, 106:043509.CrossRef 18. Balev OG, Vasko FT, Ryzhii V: Carrier heating in intrinsic graphene by a strong dc electric field. Phys Rev B 2009, 79:165432.CrossRef 19. Vasko FT, Ryzhii V: Voltage and temperature dependencies of conductivity in gated graphene. Phys Rev B 2007, 76:233404.CrossRef 20. Chuang C, Puddy RK, Lin HD, Lo ST, Chen TM, Smith CG, Liang CT: Experimental evidence for

Efros–Shklovskii selleck screening library variable range hopping in hydrogenated graphene. Solid State Communications 2012,152(10):905.CrossRef 21. Zhu WJ, Perebeinos V, Freitag M, Avouris P: Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys Rev B 2009, 80:235402.CrossRef 22. Hwang EH, Das Sarma S: Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys Rev B 2008, 77:115449.CrossRef 23. Ando T: Anomaly of optical phonon in monolayer graphene. J Phys Soc Jap 2006, 75:7. 24. Hwang EH, Adam S, Das Sarma S: Carrier transport in two-dimensional graphene

layers. Phys Rev Letts 2007, 98:18. 25. Hwang EH, Das Sarma S: Screening-induced temperature-dependent O-methylated flavonoid transport in two-dimensional graphene. Phys Rev B 2009, 79:165404.CrossRef 26. Liu YP, Goolaup S, Murapaka C, Lew WS, Wong SK: Effect of Magnetic Field on the Electronic Transport in Trilayer Graphene. Acs Nano 2010, 4:7087–7092.CrossRef 27. Zheng Y, Ando T: Hall conductivity of a two-dimensional graphite system. Phys Rev B 2002, 65:245420.CrossRef 28. Liu YP, Lew WS, Goolaup S, Liew HF, Wong SK, Zhou TJ: Observation of oscillatory resistance behavior in coupled bernal and rhombohedral stacking graphene. Acs Nano 2011, 5:5490–5498.CrossRef 29. Yang CH, Peeters FM, Xu W: Density of States and magneto-optical conductivity of graphene in a perpendicular magnetic field. Phys Rev B 2010, 82:205428.CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions YPL fabricated the device and performed the experiments. WQJ and WSL coordinated the project. ZWL and WSL provided key interpretation of the data.

​1016/​j ​bbamem ​2012 ​09 ​017 16 Wolfe AJ: The acetate switch

​1016/​j.​bbamem.​2012.​09.​017 16. Wolfe AJ: The acetate switch. Microbiol Mol Biol Rev 2005,69(1):12–50.PubMedCrossRef AICAR 17. Gimenez R,

Nunez MF, Badia J, Aguilar J, Baldoma L: The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J Bacteriol 2003,185(21):6448–6455.PubMedCrossRef 18. Jolkver E, Emer D, Ballan S, Krämer R, Eikmanns BJ, Marin K: Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol 2009,191(3):940–948.PubMedCrossRef 19. Kasianowicz J, Benz R, McLaughlin S: The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes. J Membr Biol 1984,82(2):179–190.PubMedCrossRef 20. Hosie AHF, Allaway D, Poole PS: A monocarboxylate permease

of Rhizobium leguminosarum is the first member of a new subfamily of transporters. J Bacteriol 2002,184(19):5436–5448.PubMedCrossRef 21. Oehmen A, Yuan Z, Blackall LL, Keller J: Comparison of acetate and propionate uptake by www.selleckchem.com/products/pd-1-pd-l1-inhibitor-3.html polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol CA4P Bioeng 2005,91(2):162–168.PubMedCrossRef 22. Borghese R, Cicerano S, Zannoni D: Fructose increases the resistance of Rhodobacter capsulatus to the toxic oxyanion tellurite through repression of acetate permease (ActP). Antonie Van Leeuwenhoek 2011,100(4):655–658.PubMedCrossRef Decitabine cell line 23. Burow LC, Mabbett AN, McEwan AG, Bond PL, Blackall LL: Bioenergetic models for acetate and phosphate transport in bacteria important in enhanced biological phosphorus removal. Environ Microbiol 2008,10(1):87–98.PubMed Competing interests The authors declare that they have no competing interests. Authors contributions XS and KFK designed and carried out the studies and drafted the manuscript. JSHT conceived of the study, participated in the design and coordination of the study and drafted the manuscript.

All authors read and approved the final manuscript.”
“Background Bacteriophages have critically important roles in genome diversification and the evolution of virulence and host adaptation of enteric bacteria. Genes encoding Shiga toxins (Stx) 1 and 2 are found on lambdoid phages in Shiga-toxigenic Escherichia coli, while similar Gifsy and Fels phages encode a number of virulence factors in Salmonella enterica serovar Typhimurium. In addition to carrying genes encoding virulence factors, integrated prophage can affect gene expression of the host bacterium. The recent demonstration of three distinct bacteriophages integrated into the genome of Campylobacter jejuni chicken isolate RM1221 suggested that such phages may be common and important for the biology of C. jejuni[1]. At least one of these three C. jejuni integrated elements (CJIEs) [2] was a Mu-like phage inducible with mitomycin C designated CJIE1 (or Campylobacter Mu-like phage 1, CMLP1).

The total length of the genome sequence following assembly is lis

The total length of the genome sequence following assembly is see more listed (to the nearest 0.1 Mbp) for each strain. The 11 strains below the horizontal line are AG-881 ic50 those for which the quality of the assembled genome sequence was insufficient for the sequence data to be included in subsequent analyses. * Strains were originally designated as NT. The genome assemblies were aligned in a pair-wise fashion using Mauve [16]. The length of the aligned portion of genomes achieved between any pair of strains, expressed as a percentage of the genome sequence length, was used as a measure of the relatedness of the strains. These pair-wise

relationships were displayed as a heatmap using the R statistical package included within the analysis software (Figure  selleck chemicals llc 1). This method of ordering of strains is dependent on each having a similar degree of sequence coverage, and hence assembly length, thus the analysis was confined to data for the 60 genomes of H.

influenzae and H. haemolyticus sequenced in the same flow cell (see Methods). A tree obtained following a simpler SNP-based analysis of the genome sequences (Additional file 1: Figure S1) gave an overall similar grouping of strains, validating the output from the Mauve analysis. Figure 1 Whole genome heat map, constructed by Mauve, to achieve pairwise percentage of genome sequence alignment. Pair-wise Mauve alignments were conducted with 60 H. influenzae and H. haemolyticus genome sequences from strains included N-acetylglucosamine-1-phosphate transferase on a single sequencing flow cell. For each pair-wise comparison the length of the alignment achieved, expressed as the percentage of the total sequence length, was calculated and a distance matrix created. The heat map was created using the R statistical package and shows the clustered genomes determined by the default R heatmap function clustering methods ( http://​www.​r-project.​org/​). At the top of the figure, an indication of the relatedness between genomes is given. Mauve achieved pairwise genome sequence alignments of between 69.8 and 94.4% across our

range of genomes. Strains are listed in the same order on the x and y axes; groupings discussed in the text are indicated along the top axis and the relevant strains are indicated by brackets on the right hand side axis, labelled with a Greek letter. Whole genome alignment reveals details of the genetic relationships of H. influenzae type b strains Although this approach cannot give information on detailed phylogenetic relationships, it did allow the identification of some major groups and many sub-groups of strains (Figure  1) that were plausible and consistent with previously published analyses. Strains expressing a capsule fell into two groups (α and β in Figure  1) distinct from other H. influenzae strains.